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Abstract: The starting point for our discussion is the present value (PV) determined by means of 

positive fuzzy number. The information described by the so-determined PV may be supplemented 

with a subjective forecast of the sense trend of observed current market price. This forecast is 

implemented in the supplemented PV model, as the orientation of fuzzy number. The prediction of 

rise in market price is described as a positive orientation of ordered fuzzy number. In analogous 

way, the prediction of fall market price is described as the negative orientation of ordered fuzzy 

number. In this way, PV is presented as ordered fuzzy number. So specified PV is used for 

determine the simple return rate. With the assumption that the FV is a random variable under 

Gaussian distribution of probability, discount factor is described as ordered fuzzy random 

variable. At the end it is shown that the expected discount factor is determined as ordered fuzzy 

number. The orientation of expected discount factor is consistent with orientation of the PV 

defining it. 
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1. Introduction 

By a security we understand an authorization to receive future financial revenue, payable to a certain maturity. 

The value of this revenue is interpreted as anticipated future value (FV) of the asset. In Piasecki and Siwek 

(2017) it is detailed justified that FV is a random variable. 

In general, any security may be evaluated by means of  some  function of FV and the present value (PV) 

defined as a present equivalent of a cash flow in a given time in the present or future (Piasecki, 2012). It is 

commonly accepted that the PV of a future cash flow can be imprecise. The natural consequence of this 

approach is estimating PV with fuzzy numbers. A detailed description of the evolution of this particular model 

can be found in Piasecki (2014).  

In Piasecki (2011) and Piasecki and Siwek (2015) the behavioural present value (BPV) was defined as such 

approximation of current market price which is imprecisely estimated under impact of behavioural factors. In 

(Łyczkowska, 2017) the information described by BPV is supplemented with a subjective forecast of the market 

price trend. This forecast was implemented in the model BPV as an orientation of fuzzy number. In this way the 

BPV was replaced by oriented BPV described by an ordered fuzzy number (Kosiński et al., 2003). The positive 

orientation of fuzzy number describes a subjective prediction of rise in market price.  The negative orientation of 

fuzzy number describes a subjective prediction of fall in market price.   

The main tool of a security assessment is return rate defined as any nonincreasing function of PV and 

nondecreasing one of FV. For the case of security with oriented PV estimated by ordered fuzzy number the 

expected return rate is determined in Piasecki (2017). In Piasecki and Siwek (2017) it is shown that, for 
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appraising the considered securities, the expected fuzzy discount factor is better tool for portfolio analysis  than 

expected fuzzy return rate. 

Therefore the main purpose of presented article is to determine expected discount factor for the case when 

the security is evaluated by oriented PV. For this discount factor its ambiguity index will be proposed. The 

results obtained in this way should facilitate the analysis of the portfolio of securities with oriented PV. 

2. Elements of ordered fuzzy number theory  

By ℱ(ℝ) we denote the family of all fuzzy subsets of a real line ℝ. An imprecise number is a family of values in 

which each considered value belongs to it in a varying degree. A commonly accepted model of imprecise 

number is the fuzzy number, defined as a fuzzy subset of the real line ℝ. The most general definition of fuzzy 

number is given as follows: 

Definition 1: (Dubois and Prade, 1979): The fuzzy number (FN) is a fuzzy subset ℒ ∈ ℱ(ℝ) with bounded 

support:  

 𝕊(ℒ) = {𝑥 ∈ ℝ: 𝜇ℒ(𝑥) > 0}, (1) 

and represented by its semi-continuous from above membership function 𝜇ℒ ∈ [0; 1]ℝ satisfying the conditions: 

 

∃𝑥∈𝕊(ℒ)  𝜇ℒ(𝑥) = 1, 

∀
(𝑥,𝑦,𝑧)∈(𝕊(ℒ))

3  𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ 𝜇ℒ(𝑦) ≥ min{𝜇ℒ(𝑥); 𝜇ℒ(𝑧)}.  

(2) 

(3) 

The set of all FN we denote by the symbol 𝔽. Dubois and Prade (1978) first introduced the arithmetic operations 

on FN. These arithmetic operations are coherent with the Zadeh Extension Principle (Zadeh, 1975a, 1975b, 

1975c). Among other things, Dubois and Prade (1980) have distinguished a special type of representation of FN 

called LR-type FN which may be generalized in following way. 

Definition 2: Let for any nondecreasing sequence {𝑎, 𝑏, 𝑐, 𝑑} ⊂ ℝ the left reference function 𝐿ℒ ∈ [0; 1][𝑎,𝑏] and 

the right reference function 𝑅ℒ ∈ [0; 1][𝑐,𝑑] are continuous from above monotonic functions satisfying the 

condition: 

 𝐿ℒ(𝑏) = 𝑅ℒ(𝑐) = 1. (4) 

Then the identity:  

 𝜇𝐹𝑁(𝑥|𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) =

{
 

 
  0,                                  𝑥 ∉ [𝑎, 𝑑] = [𝑑, 𝑎],

𝐿ℒ(𝑥),                           𝑥 ∈ [𝑎, 𝑏] = [𝑏, 𝑎],

1,                                   𝑥 ∈ [𝑏, 𝑐] = [𝑐, 𝑏],

𝑅ℒ(𝑥),                           𝑥 ∈ [𝑐, 𝑑] = [𝑑, 𝑐] 

 (5)
1
 

defines the membership function 𝜇𝐹𝑁(∙ |𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) ∈ [0,1]ℝ of the FN ℒ(𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) which is called 

LR-type FN (LR-FN). 

For any LR-FN ℒ(𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) we have: 

 ]𝑎, 𝑑[ ⊂ 𝕊(ℒ(𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ)) ⊂ [𝑎, 𝑑]. (6) 

In Goetschel and Voxman (1986) it is proved that any FN may be described as LR-FN in the sense given by 

the Definition 2.  The following terms are applied in this proof.  

Definition 3: Pseudo inverse function 𝑙⊲ ∈ [0; 1][𝑙(0),𝑙(1)] of any bounded continuous and nondecreasing 

function 𝑙 ∈ [𝑙(0), 𝑙(1)][0;1] is given by the identity: 

 𝑙⊲(𝑥) = max{𝛼 ∈ [0; 1]: 𝑙(𝛼) = 𝑥}. (7) 

Definition 4: Pseudo inverse function 𝑟⊲ ∈ [0; 1][𝑟(1),𝑟(0)] of any bounded continuous and nonincreasing 

function 𝑟 ∈ [𝑟(0), 𝑟(1)][0;1]  is given by the identity: 

 𝑟⊲(𝑥) = min{𝛼 ∈ [0; 1]: 𝑟(𝛼) = 𝑥}. (8) 

The concept of ordered fuzzy numbers  (OFN) was introduced by Kosiński and his co-writers in the series of 

papers (Kosiński et al., 2002; Kosiński, 2006) as an extension of the concept of FN. Thus, any OFN should be 

determined as a fuzzy subset in the real line ℝ. On the other hand, Kosiński has defined OFN as a ordered pair of 

                                                 
1
 Let us note that this identity describes additionally extended notation of numerical intervals, which is used in this work.  



IX International Scientific Conference 

Analysis of International Relations 2018. Methods and Models of Regional Development, Winter Edition 

Katowice, Poland          12 January 2018 

 

71 

 

functions from the unit interval [0,1] into ℝ. This kind of pair is not a fuzzy subset in ℝ. Thus we can not accept 

original Kosiński’s terminology. What is more, the intuitive Kosiński’s approach to the notion of OFN is very 

useful. For these reasons, below we present a revised definition of OFN which fully corresponds to the intuitive 

definition by Kosiński. The OFN concept of a number is closely linked to the following ordered pair. 

Definition 5. By the Kosiński’s pair  ⟦ℒ⟧ we understand the ordered pair (𝑓ℒ , 𝑔ℒ) of monotonic continuous 

surjections  𝑓ℒ: [0,1] → 𝑈𝑃ℒ = [𝑓ℒ(0), 𝑓ℒ(1)] and 𝑔ℒ: [0,1] → 𝐷𝑂𝑊𝑁ℒ = [𝑔ℒ(0), 𝑔ℒ(1)] fulfilling the 

conditions: 

 

(𝑓ℒ(1) − 𝑓ℒ(0)) ∙ (𝑔ℒ(1) − 𝑔ℒ(0)) ≤ 0, 

|𝑓ℒ(1) − 𝑔ℒ(1)| ≤ |𝑓ℒ(0) − 𝑔ℒ(0)|, 

𝑈𝑃ℒ ∩ 𝐷𝑂𝑊𝑁ℒ = {𝑓ℒ(1)} ∩ {𝑔ℒ(1)}.   

(9) 

(10) 

(11) 

Remark: In the original final version of the Kosiński’s definition (Kosiński, 2006), the OFN is defined as an 

ordered pair (𝑓ℒ , 𝑔ℒ) of continuous functions 𝑓ℒ: [0,1] → 𝑈𝑃ℒ  and 𝑔ℒ: [0,1] → 𝐷𝑂𝑊𝑁ℒ . Kosiński marked other 

conditions for the above definition on the graphs only. Because OFN defined this way is not a fuzzy set, in the 

Definition 5 the Kosiński’s term OFN was replaced by the term “Kosiński’s pair”.  

For any Kosiński’s pair (𝑓ℒ, 𝑔ℒ)  the function 𝑓ℒ: [0,1] → 𝑈𝑃ℒ  is called the up-function. Then the function 

𝑔ℒ: [0,1] → 𝐷𝑂𝑊𝑁ℒ  is called down-function. The up-function and down-function are collectively referred as 

Kosiński’s maps. The condition (9) implies that Kosiński’s maps cannot be increasing or decreasing at the same 

time. Knowing this fact, we define OFN in following way. 

Definition 6. For fixed Kosiński’s pair ⟦ℒ⟧  the OFN ℒ⃡ is defined as the pair (ℒ, ℧) of LR-FN ℒ ∈ 𝔽 and 

orientation ℧ in that the following way: 

 the left reference function 𝐿ℒ is equal to pseudo-inverse function of the nondecreasing Kosiński’s map;  

 the right reference function 𝑅ℒ  is equal to pseudo-inverse function of the nonincreasing Kosiński’s 

map;   

 orientation ℧ is determined as common sense of all vectors from up-function range 𝑈𝑃ℒ to down-

function range 𝐷𝑂𝑊𝑁ℒ.     

The above definition is coherent to the intuitive Kosiński’s approach to the OFN term. Therefore we agree 

with other scientists that the OFN should be called the Kosiński’s number (Prokopowicz and Pedrycz, 2015). 

The space of all OFN is denoted by the symbol 𝕂. For any OFN ℒ⃡  ∈ 𝕂, its up-function is denoted by 𝑓ℒ and its 

down-function is denoted by 𝑔ℒ. The OFN  ℒ⃡  ∈ 𝕂  is explicitly determined by its membership function 

𝜇𝑂𝐹𝑁 ⃡        (∙ |𝑓ℒ(0), 𝑓ℒ(1), 𝑔ℒ(1), 𝑔ℒ(0), 𝑓ℒ
⊲, 𝑔ℒ

⊲) ∈ [0,1]ℝ given as follows: 

 𝜇𝑂𝐹𝑁 ⃡        (𝑥|𝑓ℒ(0), 𝑓ℒ(1), 𝑔ℒ(1), 𝑔ℒ(0), 𝑓ℒ
⊲, 𝑔ℒ

⊲) =

{
 

 
0,                    𝑥 ∉ [𝑓ℒ(0), 𝑔ℒ(0)] = [𝑔ℒ(0), 𝑓ℒ(0)],

𝑓ℒ
⊲(𝑥),             𝑥 ∈ [𝑓ℒ(0), 𝑓ℒ(1)] = [𝑓ℒ(1), 𝑓ℒ(0)],    

1,                    𝑥 ∈ [𝑓ℒ(1), 𝑔ℒ(1)] = [𝑔ℒ(1), 𝑓ℒ(1)],

𝑔ℒ
⊲(𝑥),             𝑥 ∈ [𝑔ℒ(1), 𝑔ℒ(0)] = [𝑔ℒ(0), 𝑔ℒ(1)].

 (12) 

The OFN  ℒ⃡  ∈ 𝕂  determined by the membership function 𝜇𝑂𝐹𝑁 ⃡        (∙ |𝑓ℒ(0), 𝑓ℒ(1), 𝑔ℒ(1), 𝑔ℒ(0), 𝑓ℒ
⊲, 𝑔ℒ

⊲) ∈ [0,1]ℝ  

we will denote by the symbol ℒ⃡(𝑓ℒ(0), 𝑓ℒ(1), 𝑔ℒ(1), 𝑔ℒ(0), 𝑓ℒ
⊲, 𝑔ℒ

⊲). Taking into account all above 

considerations, we can to define equivalently OFN in following way.       

Definition 7: Let for any nondecreasing sequence {𝑎, 𝑏, 𝑐, 𝑑} ⊂ ℝ the starting-function 𝑆ℒ : [𝑎, 𝑏] ⟶ [0,1] and 

the ending-function 𝐸ℒ : [𝑐, 𝑑] ⟶ [0,1] are continuous from above monotonic functions satisfying the condition: 

 𝑆ℒ(𝑏) = 𝐸ℒ(𝑐) = 1. (13) 

Then the identity: 

 𝜇𝑂𝐹𝑁 ⃡        (𝑥|𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ) =

{
 

 
  0,                                  𝑥 ∉ [𝑎, 𝑑] = [𝑑, 𝑎],

𝑆ℒ(𝑥),                            𝑥 ∈ [𝑎, 𝑏] = [𝑏, 𝑎],

1,                                   𝑥 ∈ [𝑏, 𝑐] = [𝑐, 𝑏],

𝐸ℒ(𝑥),                          𝑥 ∈ [𝑐, 𝑑] = [𝑑, 𝑐]

 (14) 

defines the membership function 𝜇𝑂𝐹𝑁 ⃡        (∙ |𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ) ∈ [0,1]ℝ of the OFN ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ).  

Moreover, we have here: 
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 ]𝑎, 𝑑[ ⊂ 𝕊 (ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ)) ⊂ [𝑎, 𝑑] (15) 

The conditions (9), (10) and (11) imply that this OFN ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ) fulfils exactly one from the following 

conditions: 

 
𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑, 

𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 𝑑. 

(16) 

(17) 

The condition (16) describes the positive orientation ℧ of OFN ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ). In this case, the starting-

function 𝑆ℒ is nondecreasing and the ending-function 𝐸ℒ is nonincreasing. The space of all positive oriented 

OFN we denote by the symbol 𝕂+.  Any positive oriented OFN is interpreted as such imprecise number, which 

may increase.  

The condition (17) describes negative orientation ℧ of OFN ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ). In this case, the starting-

function 𝑆ℒ is nonincreasing and the ending-function 𝐸ℒ is nondecreasing. The space of all negative oriented 

OFN we denote by the symbol 𝕂−. Negative oriented OFN is interpreted as such imprecise number, which may 

decrease.  

Arithmetic operations on OFN are defined by Kosiński (2006) as extension of arithmetic operations on the 

real numbers. In a special case, for any Kosiński’s pair ⟦ℒ⟧ = (𝑓ℒ, 𝑔ℒ) determining the OFN 

ℒ⃡ = ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑓ℒ
⊲, 𝑔ℒ

⊲) and for any monotonic function ℎ: ℝ ⊃ 𝔸 → ℝ we have: 

 ℎ(ℒ⃡) = 𝑍 = 𝑍 (ℎ(𝑎), ℎ(𝑏), ℎ(𝑐), ℎ(𝑑), (ℎ ∘ 𝑓ℒ)⊲, (ℎ ∘ 𝑔ℒ)⊲). (18) 

At the end, let us note that for any for any Kosiński’s pair ⟦ℒ⟧ determining the OFN ℒ⃡ = ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑓ℒ
⊲, 𝑔ℒ

⊲) 

and for any 𝛾 ≠ 0 we have the identity: 

 𝜇𝑂𝐹𝑁 ⃡        (𝛾 ∙ 𝑥|𝑎, 𝑏, 𝑐, 𝑑, 𝑓ℒ
⊲, 𝑔ℒ

⊲) = 𝜇𝑂𝐹𝑁 ⃡        (𝑥|
𝑎

𝛾
,
𝑏

𝛾
,
𝑐

𝛾
,
𝑑

𝛾
, (𝑑(∙ |𝛾)°𝑓ℒ)⊲, (𝑑(∙ |𝛾)°𝑔ℒ)⊲), (19) 

where the function 𝑑(∙ |𝛾) ∈ ℝℝ is given by the identity: 

 𝑑(𝑥|𝛾) =
𝑥

𝛾
. (20) 

Ambiguity of OFN is interpreted as a lack of a clear recommendation one value between among various 

others. An increase in information ambiguity makes it less useful and therefore it is logical to consider the 

problem of ambiguity assessment. In Piasecki and Siwek (2017) the ambiguity of LR-FN ℒ(𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) is 

evaluated by energy measure 𝑒 ∈ [ℝ0
+]𝔽 determined as integral of its membership function 

𝜇𝐹𝑁(∙ |𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ) in following way: 

 𝑒(ℒ(𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ)) = ∫ 𝜇𝐹𝑁(𝑥|𝑎, 𝑏, 𝑐, 𝑑, 𝐿ℒ , 𝑅ℒ)𝑑𝑥
𝑑

𝑎
. (21) 

Thus we propose to apply for ambiguity evaluation the ambiguity index 𝑎 ∈ ℝ𝕂 which assets the ambiguity of 

OFN ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ) by integral of its membership function 𝜇𝑂𝐹𝑁 ⃡        (∙ |𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ) as follows: 

 𝑎 (ℒ⃡(𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ)) = ∫ 𝜇𝑂𝐹𝑁 ⃡        (𝑥|𝑎, 𝑏, 𝑐, 𝑑, 𝑆ℒ , 𝐸ℒ)𝑑𝑥
𝑑

𝑎
. (22) 

Quite new for evaluation fact is that for any negative oriented OFN its ambiguity index is negative. This gives  

new perspectives for portfolio risk management.    

4. Oriented fuzzy present value 

Let us consider the fixed security. We observe a market price �̌� > 0 of this security. In line with the assumption 

applied in Piasecki (2011b, 2017) and Piasecki and Siwek (2015, 2017), PV is such a positive fuzzy number, 

which is an approximation of the market price �̌�. Therefore, we can determine PV as positive LR-FN   

𝑃𝑣(�̌�𝑚𝑖𝑛 , �̌�∗, �̌�
∗, �̌�𝑚𝑎𝑥 , 𝐿𝑃𝑣 , 𝑅𝑃𝑣), where: 

 �̌�𝑚𝑖𝑛 ∈ ]0, �̌�] is the maximal lower bound of PV, 

 �̌�𝑚𝑎𝑥 [�̌�, +∞[ is the minimal upper bound of PV, 

 �̌�∗ ∈ [�̌�𝑚𝑖𝑛 , �̌�] is the minimal upper assessment of prices visibly lower than the market price �̌�, 

  �̌�∗ ∈ [�̌�, �̌�𝑚𝑎𝑥] is the maximal lower assessment of prices visibly higher than the market price �̌�, 

 (𝐿𝑃𝑣 , 𝑅𝑃𝑣) is any ordered pair of references functions described in the Definition 2. 
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The method of determining parameters �̌�𝑚𝑖𝑛 , �̌�𝑚𝑎𝑥 is given in Piasecki and Siwek (2015). For given left 

reference function  𝐿𝑃𝑣 ∈ [0,1][�̌�𝑚𝑖𝑛 ,�̌�∗] and right reference function   𝑅𝑃𝑣 ∈ [0,1][�̌�∗,�̌�𝑚𝑎𝑥], the membership 

function 𝜇𝑃𝑣 ∈ [0,1]ℝ of LR-FN 𝑃𝑣(�̌�𝑚𝑖𝑛 , �̌�∗, �̌�
∗, �̌�𝑚𝑎𝑥 , 𝐿𝑃𝑣 , 𝑅𝑃𝑣) is uniquely defined by identity (5).  

In this section the information described by defined above PV is supplemented with a subjective forecast of 

orientation of the market price trend. In agree with OFN interpretation, we use here the following rules recording 

the alleged orientation of the trend:  

 The prediction of rise in market price is described as a positive orientation of ordered fuzzy number. 

Then PV will be presented as OFN 𝑃𝑣 ⃡   (�̌�𝑚𝑖𝑛 , �̌�∗, �̌�
∗, �̌�𝑚𝑎𝑥  , 𝐿𝑃𝑣 , 𝑅𝑃𝑣). 

 The prediction of fall in market price is described as the negative orientation of ordered fuzzy number. 

Then PV will be presented as OFN 𝑃𝑣 ⃡   (�̌�𝑚𝑎𝑥 , �̌�∗, �̌�
∗, �̌�𝑚𝑖𝑛 , 𝑅𝑃𝑣 , 𝐿𝑃𝑣). 

In this way PV is presented as the ordered fuzzy number. Each of these PV representations is called oriented 

fuzzy PV (OFPV). By writing OFPV with any orientation we will denote it by the symbol 

𝑃𝑣 ⃡   (�̌�𝛼 , �̌�𝛽 , �̌�𝛾, �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣), where: 

 [�̌�𝛼 , �̌�𝛿] ⊂ ℝ+ is interval of all possible PV’ values, 

 [�̌�𝛽 , �̌�𝛾] ⊂ [�̌�𝛼 , �̌�𝛿] is interval of all prices which differ invisible from market price �̌�, 

 (𝑆𝑃𝑣 , 𝐸𝑃𝑣) is any ordered pair of starting-function and ending-function described in the Definition 7. 

The OFPV 𝑃𝑣 ⃡   (�̌�𝛼 , �̌�𝛽 , �̌�𝛾 , �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣) is determined by membership function  𝜇𝑂𝐹𝑁 ⃡        (∙ |�̌�𝛼 , �̌�𝛽 , �̌�𝛾, �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣) 

given by the identity (14). Such defined OFPV may be applied for determining the discount factor.  

5. Oriented fuzzy discount factor 

Let us assume that the time horizon  𝑡 > 0 of an investment is fixed.  Then, the security considered here is 

determined by two values: anticipated FV  𝑉𝑡  and assessed PV 𝑉0. The basic characteristic of benefits from 

owning this security is a return rate 𝑟𝑡 given by the identity: 

 𝑟𝑡 = 𝑟(𝑉0, 𝑉𝑡). (23) 

In the general case, if (𝑉0, 𝑉𝑡) ∈ ℝ+ × ℝ+  then the function: 𝑟: ℝ+ × ℝ+ → ℝ is a decreasing function of PV 

and an increasing function of FV. It implies that for any pair (𝑉0, 𝑉𝑡) ∈ ℝ+ × ℝ+ we can determine inverse 

functions 𝑟𝑉
−1(𝑉0,∙): ℝ+ → ℝ+ and 𝑟0

−1(∙, 𝑉𝑡): ℝ
+ → ℝ+. Moreover, in the special case we have here:  

 simple return rate: 

 𝑟𝑡 =
𝑉𝑡−𝑉0

𝑉0
=

𝑉𝑡

𝑉0
− 1, (24) 

 logarithmic return rate : 

 𝑟𝑡 = ln
𝑉𝑡

𝑉0
. (25) 

In Piasecki and Siwek (2017) it is detailed justified that FV  is a random variable random variable �̃�𝑡: Ω ⟶
ℝ+. The set Ω is a set of elementary states 𝜔 of the financial market. In the classical approach to the problem of 

the return rate estimation, the security PV is identified with the observed market price �̌�.Then the return rate is a 

random variable determined by the identity: 

 �̃�𝑡(𝜔) = 𝑟 (�̌�, �̃�𝑡(𝜔)). (26) 

In practice of financial markets analysis, the uncertainty risk is usually described by probability distribution 

of return rate determined by (26). At the moment, we have an extensive   knowledge on this subject. Let us 

assume that this probability distribution is given by cumulative distribution function 𝐹𝑟: ℝ ⟶ [0; 1]. We assume 

here that the expected value �̅� of this distribution exists. On other side, the cumulative distribution function 𝐹𝑟  

determines probability distribution 𝑃: 2Ω ⊃ �̃�−1(ℬ) ⟶ [0; 1], where the symbol ℬ denotes the smallest Borel  σ-

field containing all intervals in the real line ℝ. Moreover, let us note that there we have: 

 �̃�𝑡(𝜔) = 𝑟𝑉
−1 (�̌�, �̃�𝑡(𝜔)). (27) 

Let us consider now the case when PV is determined as OFPV 𝑃𝑣 ⃡   (�̌�𝛼 , �̌�𝛽 , �̌�𝛾, �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣) represented by its 

membership function 𝜇𝑃𝑣 ⃡   ∈ [0; 1]ℝ given by the identity: 

 𝜇𝑃𝑣 ⃡   (𝑥) = 𝜇𝑂𝐹𝑁 ⃡        (𝑥|�̌�𝛼 , �̌�𝛽 , �̌�𝛾 , �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣). (28) 
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According to the Zadeh's Extension Principle, the simple return rate calculated for the OFPV is a fuzzy 

probabilistic set represented by its membership function �̃� ∈ [0; 1]ℝ×Ω  given by: 

�̃�(𝑟, 𝜔) = sup{𝜇𝑃𝑉 ⃡    (𝑥): 𝑟 = 𝑟(𝑥, 𝑉𝑡(𝜔)), 𝑥 ∈ ℝ} = 𝜇𝑃𝑉 ⃡    (𝑟0
−1(𝑟, 𝑉𝑡(𝜔))) = 𝜇𝑃𝑉 ⃡    (𝑟0

−1 (𝑟, 𝑟𝑉
−1 (�̌�, �̃�𝑡(𝜔)))).   (29) 

Then the membership function 𝜌 ∈ [0; 1]ℝ of expected return rate is calculated in following way: 

 𝜌(𝑟) = ∫ 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (𝑟, 𝑟𝑉

−1(�̌�, 𝑦))) 𝑑
+∞

−∞
𝐹𝑟(𝑦) = 𝜇𝑃𝑉 ⃡    (𝑟0

−1 (𝑟, 𝑟𝑉
−1(�̌�, �̅�))). (30) 

In Piasecki and Siwek (2017) it is shown that, for appraising the considered securities, the expected fuzzy 

discount factor is better tool than expected fuzzy return rate. Therefore we will to determine expected discount 

factor for the case of OFPV. In general, for given return rate 𝑟𝑡 the discount factor 𝑣𝑡 is explicitly determined by 

the identity: 

 𝑟𝑡 = 𝑟(𝑣𝑡 , 1). (31) 

We shall consider expected discount factor �̅� defined by identity: 

 �̅� = 𝑟0
−1(�̅�, 1). (32) 

In line with (30), the membership function  𝛿 ∈ [0,1]ℝ of an discount factor 𝒱 ∈ 𝕂 is given by the identity: 

 𝛿(𝑣) = 𝛿(𝑟0
−1(𝑟, 1)) =  𝜌(𝑟) = 𝜌(𝑟(𝑣, 1)) = 𝜇𝑃𝑉 ⃡    (𝑟0

−1 (𝑟(𝑣, 1), 𝑟𝑉
−1 (�̌�, 𝑟(�̅�, 1)))). (33) 

By means of (19), for simple return rate we obtain now: 

𝛿(𝑣) = 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (𝑟(𝑣, 1), 𝑟𝑉

−1 (�̌�, 𝑟(�̅�, 1)))) = 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (

1

𝑣
− 1, 𝑟𝑉

−1 (�̌�,
1

�̅�
− 1))) = 𝜇𝑃𝑉 ⃡    (𝑟0

−1 (
1

𝑣
− 1,

�̌�

�̅�
)) =    

= 𝜇𝑃𝑉 ⃡    (
�̌�∙𝑣

�̅�
) = 𝜇𝑂𝐹𝑁 ⃡        (

�̌�∙𝑣

�̅�
|�̌�𝛼 , �̌�𝛽 , �̌�𝛾, �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣) = 𝜇𝑂𝐹𝑁 ⃡        (𝑣|

�̌�𝛼∙�̅�

�̌�∙
,
�̌�𝛽∙�̅�

�̌�∙
,
�̌�𝛾∙�̅�

�̌�∙
,
𝐶𝛿∙�̅�

�̌�∙
, 𝑆𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
) , 𝐸𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
)).   

                          (34) 

For logarithmic return rate we obtain: 

 𝛿(𝑣) = 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (𝑟(𝑣, 1), 𝑟𝑉

−1 (�̌�, 𝑟(�̅�, 1)))) = 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (− ln 𝑣 , 𝑟𝑉

−1(�̌�, − ln �̅�))) = 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (− ln 𝑣 ,

�̌�

�̅�
)) =    

= 𝜇𝑃𝑉 ⃡    (
�̌�∙𝑣

�̅�
) = 𝜇𝑂𝐹𝑁 ⃡        (

�̌�∙𝑣

�̅�
|�̌�𝛼 , �̌�𝛽 , �̌�𝛾, �̌�𝛿 , 𝑆𝑃𝑣 , 𝐸𝑃𝑣) = 𝜇𝑂𝐹𝑁 ⃡        (𝑣|

�̌�𝛼∙�̅�

�̌�
,
�̌�𝛽∙�̅�

�̌�
,
�̌�𝛾∙�̅�

�̌�
,
�̌�𝛿∙�̅�

�̌�
, 𝑆𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
) , 𝐸𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
))  

  (35) 

Comparison of dependence (34) and (35) raises the question: What conditions should be met in order to satisfy 

the below relationship for generalized return rate: 

 𝛿(𝑣) = 𝜇𝑂𝐹𝑁 ⃡        (𝑣|
�̌�𝛼∙�̅�

�̌�∙
,
�̌�𝛽∙�̅�

�̌�∙
,
�̌�𝛾∙�̅�

�̌�∙
,
�̌�𝛿∙�̅�

�̌�∙
, 𝑆𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
) , 𝐸𝑃𝑣°𝑑 (∙ |

�̌�

�̅�
))? (36) 

The increase in the ambiguity of an expected discount factor  𝒱 ∈ 𝕂  leads to an increase in the number of 

alternative investment recommendations. It implies an increase in the risk of choosing such a financial decision, 

which will be burdened ex post by the lost profit. This kind of risk is called an ambiguity risk. The ambiguity 

risk burdening the expected discount factor  𝒱 is evaluated by the absolute value of ambiguity index given by the 

identity: 

 |𝑎(𝒱)| = |∫ 𝜇𝑃𝑉 ⃡    (𝑟0
−1 (𝑟(𝑣, 1), 𝑟𝑉

−1 (�̌�, 𝑟(�̅�, 1)))) 𝑑𝑣
𝕊(𝒱)

|. (37) 

6. Conclusions 

The results of the work fully convince that the use of OFN will facilitate the analysis of financial instruments 

with imprecise estimated values.  It is expedient to further development the fuzzy finance theory based on OFN. 
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In case of analysis of a single financial instrument, we can adopt here the methods recommended in Piasecki 

(2011a, 2014).   

Such broad possibilities encourage further research into the application of ordered fuzzy numbers in the 

theory and practice of quantified finance.  
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